34

35

36

37

39

40

41

42

43

Chapter 49
Glioma Invasion: Mechanisms and Therapeutic
Challenges

Mariano S. Viapiano and Sean E. Lawler

Abstract A hallmark of gliomas is the ability of individual tumor cells to
infiltrate the neural tissue and extend beyond the visible borders of the tumor.
Current treatments fail to remove these invasive cells, which almost invariably
lead to tumor dissemination and therapy failure in the long term. The composi-
tion and properties of the extracellular matrix (ECM) in the adult central
nervous system are notoriously inhibitory to cell motility and axonal extension.
However, glioma cells are uniquely able to remodel this microenvironment by
degradation of the neural ECM and production of a novel matrix that contains
neural-specific and mesenchymal components. Structural signals from the
ECM and soluble factors from the surrounding non-neoplastic cells regulate
the molecular and cellular mechanisms of invasion, which include matrix
remodeling, cytoskeletal reorganization, and phenotype transition from highly
proliferative to migratory. Specific strategies against invading glioma cells are
in their infancy due to the paucity of appropriate targets and the difficulty of
predicting the effects of targeting this highly plastic cell population in vivo.
Identification of the key molecular mechanisms necessary for cell invasion and
the major switches that regulate the inter-conversion of migratory and prolif-
erative phenotypes will provide a wealth of novel targets to direct therapies
against brain tumor progression and improve long-term patient survival.
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49.1 Introduction

Malignant gliomas are the most common primary tumors of the central nervous
system (CNS). A hallmark of these neoplasms is the ability of individual glioma
cells to detach from the tumor mass and invade the neural tissue (Louis, 2006). This
diffuse infiltration occurs with little distortion of the neural architecture and does
not seem to trigger inflammatory or other immune responses, placing the migrating
cells beyond the limits of current clinical detection (Claes et al., 2007). In addition,
significant evidence has shown that migrating glioma cells divide more slowly than
the cells at the core of the tumor (Demuth and Berens, 2004; Giese et al., 1996) and
are consequently more resistant to cytotoxic therapies. Therefore, these cells
remain in the CNS even after aggressive resection and treatment of the residual
tumor, becoming a major factor for local recurrence and tumor dissemination
throughout the CNS (Berens and Giese, 1999; Giese and Westphal, 2001).

Current therapeutic strategies after surgical resection, or directly applied to
inoperable tumors, target proliferating cells through a combination of cytotoxic
and anti-angiogenic drugs (Anderson et al., 2008; Salgaller and Liau, 2006).
Few attempts have been made to specifically target the migratory malignant
cells located far from the tumor center, as an additional strategy to prevent
recurrence and improve long-term management of the disease. This approach is
of major relevance because cell infiltration is a cause of rapid disease progres-
sion after initial response and therefore a major limitation against lasting
success of current therapies (Lamszus et al., 2003). Understanding the cellular
and molecular mechanisms underlying glioma invasion is thus a priority for
developing effective therapeutic strategies against the spread and recurrence of
these tumors (Claes et al., 2007; Louis, 2006). In this chapter we will focus on
the composition and remodeling of the microenvironment that surrounds the
motile glioma cells, briefly review the major signals and mechanisms involved in
glioma cell invasion, and discuss potential anti-invasive strategies.

49.2 Overview of Glioma Cell Invasion in the CNS

In solid carcinomas, increased malignancy is characterized by the ’epithelial-to-
mesenchymal’ transition of the tumor cells (Guarino et al., 2007), a set of
genotypic and phenotypic changes that enables individual cells to detach from
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the primary tumor, disrupt the basal lamina of the epithelial tissue, invade the
surrounding stroma, and eventually reach lymph and blood vessels that will
allow dissemination of the tumor to other organs (Stetler-Stevenson et al.,
1993). The dispersion of individual tumor cells from the primary lesion requires
a number of sequential steps that include detachment from the tumor core,
receptor-mediated adhesion to the immediate extracellular matrix (ECM), local
degradation of the ECM to allow cell passage, and active motility mechanisms
that drive the cells away from the tumor and/or toward attractants (Bellail et al.,
2004; Giese and Westphal, 1996; Nakada et al., 2007). The dispersion of glioma
cells within the CNS has been studied within this paradigm and in many ways
reflects it. Accordingly, most assays to study glioma cell motility and invasion
follow models of invasion and metastasis from other cancers (see Table 49.1 for
the most common assays currently in use). However, there are important
differences between the local dispersion of gliomas and the stromal infiltration
and metastasis observed in non-neural carcinomas.

Compared to peripheral tissues, central nervous tissue is highly refractory to
tumor infiltration and tumors that metastasize to the CNS almost never invade
it but rather push the neural tissue aside, even when those tumors may aggres-
sively infiltrate their tissues of origin (Subramanian et al., 2002). Conversely,
glioma cells invade the brain parenchyma well, despite the presence of an
inhibitory ECM and the absence of most basal-lamina elements and supporting
stromal cells (Giese et al., 2003). At the same time, glioma cells do not intrava-
sate into blood vessels (Bernstein and Woodard, 1995) nor metastasize to close
peripheral tissues. Moreover, when implanted peripherally, gliomas grow as
compact, encapsulated masses (Bolteus et al., 2001; Pilkington, 1997). The
ability of gliomas to colonize neural tissue as an ’intra-parenchymal metastasis’
(Bernstein, 1996) together with their metastatic failure outside the CNS indi-
cates a high degree of specialization of these tumors to the neural environment
and suggests that glioma cells may have unique mechanisms of invasion
adapted for the particular composition and structure of the CNS (Bellail
et al., 2004). Experimental models should therefore strive to reproduce the
distinguishing properties of glioma cells, and their differences with other tumors
should be kept in mind when analyzing glioma invasion in conditions that do
not mimic the neural microenvironment (Claes et al., 2007) (see Table 49.1).

Histological evidence demonstrates that glioma cells follow typical disper-
sion routes and have preferential tropisms independently of the original loca-
lization of the tumor (Giese and Westphal, 1996; Giese, 2003) (Fig. 49.1). Most
commonly, glioma cells disperse along white matter tracts, leading in many
cases to the invasion of the tumor into the opposite hemisphere in the brain
("butterfly lesions’ across the corpus callosum, see Fig. 49.1A). Glioma cells also
migrate along the basal lamina of brain blood vessels or spread in the space
between the glia limitans and the pia mater, forming perivascular and subpial
foci of proliferation. Finally, glioma cells can also move through the network of
unmyelinated cell processes that form the grey matter neuropil and proliferate
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Fig. 49.1 Anatomical pathways for glioma invasion. (A) Dramatic infiltration of a “butterfly”
glioblastoma multiforme across the corpus callosum (unfixed, gross specimen). (B) Micro-
photography of elongated, hyperchromatic tumor nuclei oriented along myelinated axons
(Luxol fast blue and H&E stain, 400X, myelinated fibers indicated with arrows). (C) Glioma
cells show preferential dispersion along myelinated tracts, blood vessels, and the basal lamina
of the subpial surface. Tumor cells can also move throughout the neuropil of the brain
parenchyma. Periaxonal and perineuronal migration often results in perineuronal satellitosis.
Image in A reproduced from the collection of Dr. John J. Kepes, with permission from the
University of Kansas, Department of Pathology and Laboratory Medicine; images in Band C
reproduced from Louis, D., Annual Review of Pathology: Mechanisms of Disease, Volume 1
© 2006, with permission from Annual Reviews (www.annualreviews.org)

around individual neurons. Detailed illustrations of these routes of dispersion
can be found in reviews by Claes et al. (2007) and Louis (2006).

The patterns of periaxonal, perivascular; and perineuronal accumulations,
or satellitosis, known as secondary structures of Scherer, are typical of clinical
specimens and can be replicated experimentally (Guillamo et al., 2001),
suggesting that glioma cells may have a stereotyped set of substrate-dependent
migratory behaviors. The routes of migration likely follow both appropriate
biochemical cues as well as favorable anatomical structures that provide path-
ways of least resistance to cell dispersion (Giese, 2003).

Regardless of the biochemical or structural influences on the migrating cells,
this invasive behavior is common to the overwhelming majority of gliomas. It
has been suggested that this reflects the acquisition of motility, a ‘'mesenchymal’
property (Wolf et al., 2003), early after transformation (Louis, 2006). Alterna-
tively, given the mounting evidence (see Chapter 44) suggesting that gliomas
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may arise from transformed neural stem cells (Barami, 2007; Gilbertson and
Rich, 2007), the migratory phenotype could be a reflection of the motile nature
of the committed neural progenitors that derive from those stem cells (Claes
et al., 2007). Evidence from experimental models indicates that glioma cells
move through the neural architecture in a manner that largely resembles the
migration of neural progenitors and that is quite different from glioma cell
motility in vitro (Beadle et al., 2008). The possibility that glioma-initiating cells
derive from adult neural stem cells has raised interesting questions about the
possibility of predicting pathways of invasion radiating from neural stem cell-
rich zones. For example, recent results have shown that the depth of the tumor
in the brain and its association with the subventricular zone may correlate with
invasive and multifocal properties of glioblastomas (Lim et al., 2007).

49.3 Glioma Cell Microenvironment: Extracellular Matrix

Both grey and white matter in the adult neural parenchyma form an inhibitory
environment for cellular motility and axonal extension (Busch and Silver,
2007). To disseminate in this tissue, migrating glioma cells must interact with
a variety of substrates with different topography and molecular composition,
such as the amorphous ECM of the grey matter neuropil, the surface of white
matter fibers, and the basal lamina of the neural vasculature and the subpial
surface (Giese, 2003). The ability of glioma cells to interact with a wide variety
of substrates suggests the existence of multiple migratory mechanisms that
overcome the inhibitory elements and respond to 'motogenic’ signals to pro-
mote cell dispersion (Bellail et al., 2004).

49.3.1 Neural ECM

The major barrier opposing glioma cell movement through intercellular spaces
is the ubiquitous and distinct neural ECM that comprises as much as 20% of the
adult brain and spinal cord volume (Novak and Kaye, 2000). This matrix lacks
the typical proteins found in the fibrillar ECM of other tissues, such as col-
lagens, fibronectin and type-I laminin (Novak and Kaye, 2000), and is instead
composed of the polysaccharide hyaluronic acid (HA), with associated glyco-
proteins and proteoglycans. The major structural constituents of this matrix,
which in most cases are also expressed in gliomas, are listed in Table 49.2 and
illustrated in Fig. 49.2. Of these, HA and its HA-binding proteins are the key
molecules that form the neural ECM scaffold (Yamaguchi, 2000); other illus-
trations of these ECM components can be found in reviews by Viapiano and
Matthews (2006) and Galtrey and Fawcett (2007).

HA is a very large (~500—1000 kDa) hygroscopic glycosaminoglycan that
can retain large amounts of water, thus creating hydrated spaces used by cells to
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Fig. 49.2 Simplified model of the neural ECM. The cartoon depicts the predominant mole-
cules that compose the ECM close to the surface of the neuronal and glial cells. The
chondroitin sulfate proteoglycans of the lectican family can bind hyaluronic acid, secreted
ECM proteins, and cell-surface receptors, thus acting as extracellular ‘anchors’. ERM pro-
teins: proteins of the Ezrin/Radixin/Moesin family; SGLs: sulfoglucuronyl-glycolipids. Fig-
ure and text reproduced from Viapiano M.S. and Matthews R. T., Trends in Molecular
Medicine, Volume 12 ©) 2006, with permission from Elsevier

proliferate and migrate during development (Laurent et al., 1996). HA associ-
ates with secreted and membrane-bound HA-binding proteins, which act as orga-
nizers of the matrix scaffold around neural cells (Yamaguchi, 2000). Accumulation
of these HA-binding proteins in the adult CNS reduces the interstitial spaces and
renders the neural ECM largely insoluble, forming a restrictive environment for
axonal navigation and cell motility (Rauch, 2004; Viapiano and Matthews, 2006).

The major group of HA-binding proteins in the adult CNS is formed by the
secreted chondroitin sulfate proteoglycans (CSPGs) of the lectican family:
aggrecan, versican, neurocan, and brevican (Yamaguchi, 2000). These large,
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heavily glycosylated proteins exhibit a remarkable heterogeneity of isoforms,
expression patterns and molecular partners, but in general predominate in the
adult CNS and connect the matrix scaffold to receptors on the surface of
neurons and glial cells (Viapiano and Matthews, 2006; Yamaguchi, 2000).
The lecticans have been recognized as a major group of inhibitory molecules
for axonal extension, cellular adhesion, and motility (Rhodes and Fawcett,
2004), a property attributed in part to a chemorepellent effect of the side chains
of chondroitin sulfate (Crespo et al., 2007). Surprisingly, some members of this
family are highly expressed in gliomas and promote glioma cell migration (see
below) (Viapiano and Matthews, 2006).

The composition of the neural ECM is very similar in the grey and white
matter, with some differences in the local expression of ECM molecules in
subsets of neurons and grey matter neuropil (e.g., aggrecan, neurocan) or
around myelinated axons (e.g., versican and the tenascins). In the white matter,
the inhibitory effect of the secreted CSPGs on cell and neurite motility is
potentiated by the effect of ECM-associated molecules normally involved in
neuronal and axonal repulsion (most notably the netrins and slits (Barallobre
et al., 2005; Wong et al., 2002)), as well as the well-known myelin-associated
inhibitors (Nogo, the myelin-associated glycoprotein MAG, and the myelin
oligodendrocyte glycoprotein (Xie and Zheng, 2008)). The latter are not matri-
cellular proteins but membrane-bound ’collapse signals’ that prevent extension
of glioma cell processes and motility in vitro (Hensel et al., 1998; Liao et al.,
2004), although at least one of these myelin inhibitors (MAG) exhibits ECM-
associated, highly inhibitory soluble forms in vivo (Tang et al., 2001).

In addition to having strong inhibitory signals for cell migration and neurite
extension, the scaffold of the neural ECM also presents structural constraints
for cell motility. This scaffold is essentially a highly compressible mesh of HA
and proteoglycan filaments that does not favor cell traction because it provides
sparse, randomly organized anchorage points for the formation of intracellular
stress fibers (Georges et al., 2006; Peyton et al., 2007). This structural limitation
may be partially attenuated in the white matter due to the high density of
parallel axons that may form guiding rails for motile cells. In vitro scaffolds
composed of aligned fibers have been shown to provide topographic guidance
to neural cells and neurites and promote cell adhesion and motility better than
randomly oriented fibers (Yang et al., 2005) (also SEL and MSV, manuscript in
preparation), independently of other cues in the surrounding environment.

49.3.2 Basal Lamina

In stark contrast with the HA- and proteoglycan-based matrix that fills the
extracellular space around neurons and glial cells, the ECM that covers the
abluminal surface of the brain—blood vessels and the subpial surface resembles
the typical basal lamina that separates epithelial cells from their underlying
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stroma in peripheral tissues. This matrix contains some of the proteoglycans
and glycoproteins described in the neural ECM but is predominantly abundant
in matricellular proteins that form networks of fibrillar aggregates, such as
laminins, fibronectin, and vitronectin, and thus promote the adhesion of motile
cells (Bellail et al., 2004; Gladson, 1999). The basal lamina ECM also contains
several types of collagens, particularly collagen I'V and VI, with lower amounts
of the interstitial collagens I and 11 (Gladson, 1999; Paulus et al., 1988). This
dense, organized matrix provides higher resistance to compression than the
neural ECM and favors the formation of focal adhesions. Therefore, the basal
lamina serves as a preferred substrate for integrin-mediated cell adhesion and
motility along vascular and subpial surfaces (Goldbrunner et al., 1999). Inter-
estingly, glioma cells accumulate along this basal lamina but do not degrade it
in vivo (Paulus et al., 1988), although they can traverse the basal lamina of
peripheral blood vessels when they are injected intravenously (Mandybur et al.,
1984). The mechanisms that prevent degradation of the basal lamina of CNS
blood vessels by glioma cells are unknown, and this phenomenon has been
postulated as the underlying reason for lack of intravasation and extra-axial
metastasis of these tumors (Bernstein and Woodard, 1995)

49.4 Extracellular Remodeling and Glioma Invasion

As described above, tumor cells attempting to disseminate in the CNS are chal-
lenged by a variety of molecular and structural inhibitory factors in the neural
parenchyma that limit their adhesion and motility. Peripheral tumors facing these
obstacles continue growing but individual cells rarely detach from the tumor mass
and almost never infiltrate CNS structures. Conversely, glioma cells actively
remodel the surrounding matrix to reach the anatomical structures along which
they disseminate. This remodeling involves degradation of the pre-existing ECM,
overproduction of neural ECM molecules, secretion of novel ECM molecules that
are absent in the neural parenchyma, and expression of novel cell-surface receptors
for ECM signals. These processes are likely potentiated by additional tissue
remodeling produced by infiltrating immune cells and the proliferative endothe-
lium of hyperplastic tumor blood vessels (Bellail et al., 2004; Gladson, 1999; Kaur
et al., 2005). For the scope of this review we will focus only on the major molecular
changes exerted by isolated glioma cells invading normal neural tissue.

49.4.1 ECM Degradation

Compared to adult normal neural tissue, glioma cells exhibit increased expres-
sion of lysosomal hyaluronidases and secreted proteases. These enzymes can
degrade the pericellular matrix, opening spaces for cell motility and releasing
protein and glycosaminoglycan fragments that act as mitogenic and motogenic
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signals (Junker et al., 2003; Rao, 2003). A wealth of evidence has demonstrated
that several families of proteases actively contribute to matrix remodeling in
gliomas, including the plasminogen activators, the members of the matrix
metalloprotease (MMP) family, and the lysosomal/secreted cathepsins (Levicar
et al., 2003; Rao, 2003). Recent investigations have expanded the set of glioma-
active proteases to include the disintegrin-and-metalloproteases (ADAMs) and
the ADAMs with thrombospondin motifs (ADAMTSs) (Rocks et al., 2008).
The major members of these families that are expressed in gliomas, their
functional relevance, and their relationship with glioma progression are sum-
marized in Table 49.3.

Secreted metalloproteases, particularly members of the MMP family such as
MMP-2 and MMP-9, have been clearly demonstrated to promote brain tumor
growth and progression, as well as cell proliferation and invasion in vitro
(Levicar et al., 2003; Rao, 2003). Accordingly, upregulation of those MMPs
in gliomas correlates with tumor grade and lower survival rates (Levicar et al.,
2003; Rao, 2003). Secreted MMPs and membrane-bound ADAMs have been
involved in several functions that promote tumor progression, including matrix
degradation, release of trophic factors, regulation of cell proliferation, stimula-
tion of angiogenesis, and control of the immune response in the tumor (Egeblad
and Werb, 2002; Rocks et al., 2008).

Pericellular matrix degradation by infiltrating glioma cells in vivo, however,
may be far more restricted than what is thought from in vitro observations or
results from metastatic tumors. For example, the predominant CSPGs in the CNS,
versican and brevican, are degraded by MMPs in vitro (Nakamura et al., 2000);
however, MMP-dependent proteolysis of these proteins in intracranial gliomas is a
very minor event (Viapiano et al., 2008), suggesting that the scaffold of the neural
ECM could be less affected by degradation than by production of novel matrix
components, as described below. Similarly, despite of their high MMP expression,
glioma cells do not disrupt the basal lamina of the brain blood vessels in vivo, even
though these enzymes degrade basal lamina components during in vitro invasion
assays (Bernstein and Woodard, 1995; Paulus et al., 1988).

It is thus possible that, in addition to regulated pericellular proteolysis,
proteases in glioma may promote cell infiltration through a variety of non-
degradative mechanisms. For example, ADAMTS enzymes cleave the neural
lecticans preferentially at a single site, producing fragments that remain asso-
ciated to the ECM scaffold and act as pro-migratory signals (Ang et al., 1999;
Hu et al., 2008). In another example, MT1-MMP can induce EGFR transacti-
vation independently of its catalytic activity (Langlois et al., 2007). Moreover, it
has been shown that inhibition of metalloproteases may drive metastatic tumor
cells to adopt an amoeboid phenotype and infiltrate by ’squeezing’ through the
intercellular spaces (Wolf et al., 2003). This causes tumor cells to acquire
elongated morphologies that strongly resemble those usually seen in migratory
glioma cells in the brain (Beadle et al., 2008), suggesting that these cells may
naturally adapt to the surrounding neuropil rather than degrade their way
through it.
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49.4.2 ECM Synthesis

Matrix remodeling depends not only on controlled pericellular ECM degrada-
tion but also on the formation of a new pericellular scaffold that contains novel
ECM molecules produced by glioma cells. These structural molecules can be
roughly grouped into three categories: molecules that are highly expressed
during early neural development (HA, SPARC, phosphacan), molecules that
predominate in the adult neural ECM (lecticans), and molecules that are not
present in the normal neural ECM (basal lamina proteins).

Most gliomas contain high levels of HA comparable to those in the early
developing brain (Delpech et al., 1993). The overproduction of HA and sub-
sequent turnover by upregulated hyaluronidases in gliomas creates a regionally
disorganized scaffold that becomes very soluble and permissive for cell prolif-
eration, detachment, and movement (Novak et al., 1999). In addition, soluble
HA acts as a pro-invasive signal by increasing the expression of metallopro-
teases and ECM proteins (MMP9 and SPARC, Kim et al., 2005a; Kim et al.,
2005b); it may also promote apoptosis of immune cells (Yang et al., 2002) and
could activate tyrosine kinase signaling as demonstrated in other carcinomas
(Misra et al., 2006). Moreover, glioma cells express HA receptors that are
absent or expressed at very low levels in the normal CNS, such as CD168/
RHAMM and CD44, the latter being one of the hallmark cell-surface markers
in high-grade gliomas (Akiyama et al., 2001; Baltuch et al., 1995; Ranuncolo
et al., 2002). These receptors have a demonstrated role in promoting tumor cell
proliferation and migration through several signaling pathways in a variety of
malignancies (Hall and Turley, 1995; Knudson, 1998) (Fig. 49.3), and their
blockade or downregulation in gliomas inhibits tumor proliferation and inva-
sion in vitro and in vivo (Akiyama et al., 2001; Ward et al., 2003).

Glioma cells secrete SPARC and phosphacan, proteins that abound in the
permissive matrix of the developing CNS, but that are highly reduced in the
adult ECM. SPARC, which is overexpressed in many solid tumors (Brekken
and Sage, 2000), interacts with basal lamina proteins and promotes the prolif-
eration and migration of glioma cells in vitro, as well as tumor dispersion, but
not mass growth, in vivo (Schultz et al., 2002). At the molecular level, it has been
shown that SPARC can modulate integrin-linked kinase activity (Barker et al.,
2005), upregulate MMP expression (McClung et al., 2007), and induce cytos-
keletal changes through the chaperone HSP-27 (Golembieski et al., 2008).
These activities result in the reorganization of cell morphology, matrix remo-
deling, and a net increase in cell motility.

The membrane-bound receptor-type protein tyrosine-phosphatase RPTP-f3/
{ is highly upregulated in grades I-III gliomas and its soluble isoform, phos-
phacan, predominates in grade IV glioblastomas (Norman et al., 1998). This
complex proteoglycan activates NF-kappaB-dependent transcription,
promotes the association of glioma cells to the ECM and increases cell migra-
tion (Lorente et al., 2005), although the underlying molecular mechanisms for
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Fig. 49.3 Soluble factors and signaling pathways involved in glioma cell migration. The figure
depicts some of the major intracellular transduction pathways that respond to the well-
characterized extracellular signals that promote cell motility. The interactions in the figure
were summarized from several bibliographical sources and verified individually using the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, stored at the
Bioinformatics Center of Kyoto University and the Human Genome Center of the University
of Tokyo (http://www.genome.ad.jp/kegg/pathway.html). Small-sized receptors indicated on
both sides of the figure (p75NTR and Plexins/Neuropilins) represent novel, mostly unex-
plored signaling mechanisms recently implicated in glioma invasion

these processes are mostly unknown. Recent evidence suggests that the major
ligand of phosphacan/RPTP-B/{, the soluble factor pleiotropin, is also upregu-
lated in gliomas and may be part of an autocrine loop that promotes glioma cell
motility (Ulbricht et al., 2003). Accordingly, targeting strategies against RPTP-
B/ disrupt glioma cell motility in vitro and tumor growth in vivo (Foehr et al.,
2006; Ulbricht et al., 2006).

Somewhat surprisingly, gliomas also overexpress two CSPGs of the lectican
family that are well characterized as inhibitory molecules against cell motility in
the adult CNS: versican and brevican (Viapiano and Matthews, 2006). These
CSPGs have a clear role in promoting tumor growth and dispersion in neural
tissue (Viapiano and Matthews, 2006), although their mechanisms of action are
poorly understood. Results from in vitro assays suggest that both versican and
brevican bind to fibronectin, which is present in the glioma ECM but not the
neural ECM (Hu et al., 2008; Wu et al., 2004). Moreover, both lecticans promote
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fibronectin-dependent cell adhesion and may activate EGFR signaling (Hu et al.,
2008; Wu et al., 2004), suggesting that they could act through pathways well
characterized in brain tumor invasion.

In addition, recent evidence suggests that the role of these lecticans as moto-
genic signals in gliomas could also be consequence of the expression of isoforms
that are minor or absent in the normal adult CNS (Viapiano and Matthews,
2006). It is possible that the functions of those isoforms may differ from the
predominant role of the lecticans as inhibitors of cell motility and axonal exten-
sion (Rauch, 2004; Viapiano and Matthews, 2006). For example, versican has
four known splice variants, Vo—V3, of which Vo/V| predominates in the develop-
ing CNS while V, is the major adult isoform. Coincidentally, the isoforms V,/V,
are upregulated in glioma cells and have proliferative and anti-apoptotic func-
tions, while V, versican is highly reduced in gliomas and does not protect glioma
cells from apoptosis (Paulus et al., 1996; Rauch, 2004; Sheng et al., 2005).
Similarly, brevican exhibits novel glycoforms in gliomas that are absent in normal
adult human brain but appear during early neural development (Viapiano et al.,
2005). Moreover, full-length brevican does not have effects on glioma cell adhe-
sion or migration, but a fragment produced by ADAMTS-4/5 cleavage is suffi-
cient to act as a signal for cell dispersion in vitro and in vivo (Hu et al., 2008;
Viapiano et al., 2008). Consistent with this observation, cleavage of brevican is
increased in gliomas compared to normal CNS (Viapiano et al., 2005).

Finally, in stark contrast with normal neural cells, glioma cells secrete a group
of basal lamina components that are not expressed in the ECM of the neural
parenchyma, such as type-I laminin, fibronectin, and variable amounts of col-
lagens type I, III, IV, and VI (Gladson, 1999; Paulus et al., 1988). The expression
of these proteins in culture has been attributed to the loss of distinctive glial
features in cell lines and phenotype adaptation to culture conditions, a phenom-
enon called mesenchymal drift (Paulus et al., 1994). However, basal lamina
proteins can be detected in culture conditions that attempt to avoid this drift,
such as short-term primary cultures of gliomas and culture of glioma-derived
neurospheres in serum-free conditions (Paulus et al., 1994; Tso et al., 20006) (also
MSYV and SEL, unpublished results). Similarly, these matrix proteins can be
detected in glioblastoma cells in vivo (Gladson, 1999; Paulus et al., 1994; Tso
et. al., 2006). Taken together, these observations suggest that subsets of glioma
cells naturally have the ability to secrete mesenchymal ECM molecules into the
surrounding matrix in the brain. These molecules are key elements in the engage-
ment of integrin receptors to promote cell adhesion and migration in all solid
tumors and have a demonstrated role in glioma invasion (D’Abaco and Kaye,
2007; Giese and Westphal, 1996). In addition, type-VI collagen and fibronectin
can interact directly with HA (Kielty et al., 1992; Yamada et al., 1980), which
could affect the structure of the HA-based matrix that surrounds infiltrating
glioma cells, thus favoring cell migration.

In sum, glioma cells are able to detach from the original surrounding matrix
and produce a novel ECM that contains a variety of neural-specific proteins
absent in other tissues (e.g., phosphacan, brevican) as well as mesenchymal
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proteins absent from the brain parenchyma (fibronectin, collagens) (Bellail
et al., 2004). Thus, this ECM differs from the original neural matrix and at
the same time is distinct from the matrix secreted by peripheral tumors that
metastasize to the CNS. The glioma-specific ECM may be a unique source of
haptotactic cues and soluble signals that regulate and direct the migration of
glioma cells and could thus underlie the distinct ability of these tumors to invade
and disperse within the nervous tissue.

49.5 Soluble Signals and Transduction Mechanisms
in Glioma Invasion

In addition to the haptotactic and mechanical effects of the ECM on tumor
invasion, glioma cells have a complex paracrine interplay with neurons, glial,
endothelial, and immune cells in the microenvironment of the tumor
(Hoelzinger et al., 2007; Oliveira et al., 2005). These non-neoplastic cells secrete
soluble factors and provide substrate molecules that may promote glioma
proliferation, enhance cell adhesion/motility, and regulate the overall process
of invasion (Giese and Westphal, 1996; Hoelzinger et al., 2007). There is a
multitude of potential signals and transduction mechanisms implicated or
proposed to be involved in glioma invasion (Nakada et al., 2007)(see Chapters
37-40); here we will consider only the major soluble factors that have been
shown to consistently influence glioma cell migration and the key signaling
pathways that respond to those factors by promoting cytoskeletal reorganiza-
tion or transcription of pro-migratory genes.

49.5.1 Chemoattractants

The best characterized chemoattractants in gliomas are the ligands of the ErbB
receptors (EGF, HB-EGF, TGF-o, heregulin, etc.), the scatter factor/hepato-
cyte growth factor (SF/HGF), transforming growth factor beta (TGF-f), and
more recently the stromal-cell-derived factor (SDF)-1 (Mueller et al., 2003).
Most of these factors are produced by the neural and endothelial cells surround-
ing the tumor (paracrine stimulation) or the glioma cells themselves (autocrine/
paracrine loop) (Hoelzinger et al., 2007; Mueller et al., 2003). The major
signaling pathways that respond to these factors and activate a pro-migratory
phenotype are summarized in Fig. 49.3. Other soluble molecules shown to be
involved in regulating glioma cell migration on ECM substrates include addi-
tional growth factors (basic fibroblast growth factor, platelet-derived growth
factor, and nerve growth factor), cytokines (IL12), molecules involved in
neuronal guidance, and some bioactive lipids (lysophosphatidic acid and
sphingosine-1-phosphate) (Hoelzinger et al., 2007; Lange et al., 2008; Young
and Van Brocklyn, 2007).
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EGF and related factors are prototypical pro-migratory signals for glioma
cells in vitro (Pedersen et al., 1994). They act by activation of the receptor
tyrosine kinases (RTKs) of the ErbB family, of which the EGF receptor
(EGFR/ErbB1) is the most commonly amplified gene in malignant gliomas
(Ohgaki and Kleihues, 2007). Interestingly, amplification of this receptor could
have a direct relation to the process of invasion in high-grade gliomas; FISH
analysis has shown a gradient of EGFR amplification in glioblastoma samples,
with the highest amplification levels found in the cells at the invasive border of
the tumor (Okada et al., 2003). Activation of a different RTK, c-Met, initiates
the effect of another pro-migratory signal, the soluble factor SF/HGF
(Moriyama et al., 1999). This receptor is also upregulated in gliomas, and
more importantly, localizes predominantly to the invasive pseudopodiae of
motile glioma cells (Abounader and Laterra, 2005; Beckner et al., 2005).

The key role of RTK signaling on glioma cell proliferation in vitro and tumor
growth in vivo has been well established and makes these receptors one of the
major current therapeutic targets (Furnari et al., 2007; Nakada et al., 2007) (see
also Chapters 20 and 39) . Accordingly, pharmacological inhibition of EGFR
and c-Met, as well as antibody-mediated receptor blocking, has been shown to
powerfully inhibit both cell proliferation and migration in vitro, as well as
tumor invasion in animal models (Abounader and Laterra, 2005; Furnari
et al., 2007). The molecular mechanisms by which RTKs promote glioma cell
motility are complex and involve multiple parallel and redundant pathways,
indicated in Fig. 49.3. RTK signaling results, among other effects, in the
upregulation of matrix metalloproteases, synthesis of ECM proteins, and
cytoskeletal reorganization initiated by activation of actin-binding proteins
(Lal et al., 2002; Van Meter et al., 2004).

The growth factors TGF-B and SDF-1 act through their cognate receptors,
the serine/threonine-kinase TGF-B receptors I/I1, and the G-protein-coupled
receptor CXCR4, respectively. These factors have been implicated in a variety
of trophic effects for glioma progression, including stimulation of cell prolif-
eration, angiogenesis, resistance to apoptosis, and cell motility (Leivonen and
Kahari, 2007; Savarin-Vuaillat and Ransohoff, 2007; Wick et al., 2000).
Although these factors can be produced by glioma cells, another major source
is found in the microglial cells that invade the tumor mass in the brain, which
has led to the hypothesis that microglia may actually promote glioma cell
invasion by paracrine stimulation (Wesolowska et al., 2008). The signaling
pathways initiated by these growth factors in gliomas are not fully determined,
but in other cancer models they have been shown to exhibit significant cross talk
with RTK-mediated signaling (Bhola and Grandis, 2008; Uchiyama-Tanaka
et al.,, 2002), resulting in MAPK activation, upregulation of extracellular
MMPs and ECM proteins, and enhanced cell adhesion and motility (Leivonen
and Kahari, 2007; Savarin-Vuaillat and Ransohoff, 2007). Accordingly, inhibi-
tion of TGF-f receptors and CXCR4 reduces glioma cell invasion in vitro and
tumor growth in vivo (Ehtesham et al., 2006; Uhl et al., 2004) (see Chapter 34
for CXCR4 targeting). Interestingly, the expression patterns of SDF-1 in brain
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tissue show good correlation with the dispersion pathways favored by glioma
cells in vivo (Zagzag et al., 2008). Consistent with this observation, the receptor
CXCR4 is highly expressed at the leading edge of the tumors (Ehtesham et al.,
2006; Zagzag et al., 2008).

49.5.2 Chemorepellents

Most growth factors and cytokines that induce glioma cell motility have been
identified as attractants of the cells in vitro. However, glioma cells could also
respond to repellent factors that would stimulate dispersion outward from the
tumor core. The existence of tumor-produced chemorepellents has been postu-
lated from the observation of cell-avoidance patterns during migration in vitro
(Mueller et al., 2003; Werbowetski et al., 2004).

Members of the Slit and semaphorin families are potential candidates for a
role as chemorepellents in gliomas. The members of the Slit family act in the
normal CNS as axon guidance molecules during development and promote the
migration of neural progenitors away from the subventricular zone in the adult
brain (Wong et al., 2002). Recent results have demonstrated that Slit-2 can
effectively repel glioma and medulloblastoma cells in vitro through its receptor
Robo-1 (Mertsch et al., 2008; Werbowetski-Ogilvie et al., 2006). However, the
role of this protein as a repellent from the tumor core in vivo is uncertain,
because the S/it2 gene has been found frequently inactivated epigenetically in
gliomas (Dallol et al., 2003).

The soluble class-111 semaphorins constitute another group of well-known
chemorepellents for extending axons and neural progenitors, and, in addition,
have been implicated in tumor progression and angiogenesis (Neufeld and
Kessler, 2008). Glioma cells express the soluble semaphorins sema-3A
and -3C as well as their cognate receptors, neuropilins and plexins, and can
retain sema-3A on the cell surface (Rieger et al., 2003). However, sema-3A does
not seem to affect glioma cell morphology or motility in vitro (Rieger et al.,
2003), making it an unlikely repellent from the tumor core.

It has been proposed that the gradually increasing hypoxic status of the
growing tumor could act as a major repellent condition through exhaustion of
metabolic substrates and local decrease of pH (Werbowetski et al., 2004).
Indeed, glioma cells under hypoxia migrate at a faster rate in vitro, which has
been postulated as a possible explanation for the formation of hypercellular
zones (pseudopalisades) around necrotic foci (Brat et al., 2004) (see Chapter
22). Reduced available oxygen is known to cause the stabilization and
transcriptional activation of the hypoxia-inducible factor HIF-1«, a master
transcriptional regulator with a well-established role in promoting glioma
angiogenesis and invasion (Kaur et al., 2005).

HIF-1o is upregulated in the invasive borders of the tumor and its activity is
increased by integrin- and RTK-initiated signaling (Zagzag et al., 2003),
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suggesting that this transcription factor may act as a downstream regulator of the
pathways that promote glioma cell motility. Furthermore, HIF-1-dependent
transcription results in the upregulation of MMPs and the membrane receptors
c-Met and CXCR4 (Eckerich et al., 2007; Zagzag et al., 2006), likely resulting in
positive feedback mechanisms that mobilize glioma cells in response to both
hypoxia-induced and growth factor-induced signaling. This complex signaling
produces local tissue remodeling that favors the formation of new blood vessels
(Kaur et al., 2005) and at the same time promotes glioma cell dispersion (Zagzag
et al., 2006).

The use of RNA interference against HIF-1a reduces hypoxia-induced
migration and invasion of several glioma cell lines in vitro (Fujiwara et al.,
2007). However, direct targeting of HIF-1o has shown some contradictory
results in different gflioma models. For example, immortalized astrocytes
where HIF-1o has been deleted by recombination form small tumors when
injected subcutaneously in nude mice (Blouw et al., 2003); however, the same
cells show enhanced growth and invasion when implanted in the well-vascular-
ized brain parenchyma. These results suggest that the HIF-1-dependent
response of these tumors is strongly dependent on their microenvironment
(Blouw et al., 2003). Further work is thus needed to define conditions where
HIF-1a could be an effective target of strategies against migratory tumor cells.

49.6 Targeting Strategies Against Glioma Cell Invasion

The current standard of care for malignant gliomas after surgery is based on
the combination of irradiation and novel alkylating agents (temozolomide) to
promote apoptosis in the residual tumor. Novel stand-alone and adjuvant
approaches under clinical investigation are being directed against specific
molecular targets in the tumor cells or blood vessels, to prevent cell
proliferation, angiogenesis, and local re-growth. These approaches have
been extensively reviewed elsewhere in this book and include, among others,
small-molecule inhibitors against RTK signaling (EGFR, c-Met), signal trans-
duction pathways (PKC, RAS, mTOR), integrin-mediated adhesion, and
matrix degrading enzymes (MMPs), as well as antibody-based therapies
against major molecular targets in the tumor cells (EGFR and EGFRvIII)
and blood vessels (VEGF, VEGF receptors) (Salgaller and Liau, 2006; Stupp
et al., 2007). The points of contact between these anti-tumoral strategies and
the mechanisms underlying the migratory phenotype of glioma cells are
summarized in Fig. 49.4.

Several of these strategies could have a direct impact on glioma cell disper-
sion, such as protease inhibitors and integrin blockers that could inhibit late
steps in the process of cell adhesion and migration. However, current therapies
essentially target the local re-growth of residual tumor and their effects on the
slowly proliferating, far-reaching migratory cells are at present difficult to
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Fig. 49.4 Targeting strategies against invasive glioma cells. The figure summarizes the micro-
environmental factors that stimulate migration, the cellular processes that underlie the
migratory phenotype (white boxes), and the autocrine/paracrine feedback during glioma cell
dispersion (dashed lines). Glioma cell migration could be disrupted at several levels, including
blocking of extracellular signals, inhibition of motogenic signal transduction, and interrup-
tion of cell adhesion and matrix remodeling. The figure indicates pharmacological strategies
currently used against glioma cells and the steps where they could disrupt pro-migratory
processes

gauge. Indeed, because migratory glioma cells have reduced expression of
proliferative and pro-apoptotic genes (Mariani et al., 2001) they could be
expected to resist most cytotoxic insults better than the residual proliferating
cells (Lefranc et al., 2005) (see Chapter 28). In addition, there is evidence that
both radiation (Zhai et al., 2006) and angiostatic treatments (Lamszus et al.,
2003) can stimulate glioma cell migration. Thus, there is a risk that current
cytotoxic treatments not only may spare actively dispersing tumor cells but
could also exert a selective pressure toward an enhanced migratory phenotype
that would cause tumor recurrence in the long term (Lamszus et al., 2003).
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Therefore, there is a clear need for understanding the effect of current therapies
on migrating glioma cells and designing novel therapeutic approaches with an
explicitly formulated anti-invasive adjuvant component (Claes et al., 2007).

A first obstacle for the design of an effective anti-invasive approach resides in
the "invisibility’ of infiltrating tumor cells to current detection methods and the
anatomical difficulty of reaching them in the neural parenchyma, where they lie
behind a functional blood—brain barrier (see Chapter 33) and too far from the
tumor core to be affected by drugs delivered locally into the post-resection
cavity (Bolteus et al., 2001). These difficulties argue for the need of better
delivery systems, such as the currently employed convection enhanced delivery
(Ferguson et al., 2007), as well as improved ECM dispersion of the anti-invasive
agents, in the hope of reaching the tumor cells located farthest from the original
lesion.

The second, and likely largest, difficulty for an anti-invasive strategy is the
identification of effective pro-migratory targets. Glioma invasion is, at the
molecular level, a highly redundant process that responds to multiple signals
and depends on diverse, overlapping, signaling pathways. This molecular
redundancy has made it difficult to envision and implement targeting strategies
relying on individual ECM components, cell-surface receptors, or signaling
molecules (Giese, 2003; Giese and Westphal, 1996). For example, inhibition
of the catalytic activity of MMPs, which effectively reduces glioma cell invasion
in animal models, has shown no efficacy in clinical trials (Salgaller and Liau,
2006), underscoring the limitations of current glioma models to identify or
predict alternative mechanisms of glioma dispersion (Beadle et al., 2008; Wolf
et al., 2003).

It is worth noting that extracellular targets, however, have proved useful to
enhance the specificity and efficacy of adjuvant therapies (see Chapters 34-36).
This has been observed, for example, in the modest but significant effect of
radio-immunotherapy directed against the ECM protein tenascin-C that is
highly upregulated in gliomas (Goetz et al., 2003). In addition, pericellular
and cell-surface molecules represent the most accessible targets in the tumor
cells and a significant proportion of these potential targets in gliomas are
restricted to the CNS (tenascin-R, phosphacan, Margolis et al., 1996) or are
tumor-specific (certain brevican isoforms, Viapiano et al., 2005), which could
facilitate directed therapies with reduced non-specific and systemic responses
(Viapiano and Matthews, 2006).

To avoid the potentially limited efficacy of targeting individual signals and
receptors, a significant bulk of research on pro-invasive molecular targets is
currently focused on downstream transduction pathways that integrate extra-
cellular signals and intracellular mechanisms and may contain molecular
‘bottlenecks’ appropriate for intervention (Giese, 2003; Giese and Westphal,
1996). The non-receptor tyrosine kinases of the Src family and the small
GTPases of the Rho family have been highlighted as major examples of such
molecular integrators. These molecules are key cross-signaling factors in path-
ways initiated by a variety of extracellular signals and mediated by RTKs,



1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

49 Glioma Invasion 1243

integrins, CD44, and G-protein-coupled receptors (Fig. 49.3). Src kinases and
the RhoA/ROCK pathway are key transduction mechanisms of glioma cell
motility (Angers-Loustau et al., 2004; Goldberg and Kloog, 2006) and are
required for the convergence of multiple signals on cytoskeletal reorganization
and upregulation of pro-invasive proteins. The RhoA/ROCK pathway has
been shown as a major target for radiosensitization and adjuvant therapy in
solid cancers (Rattan et al., 2006), which makes it worthy of attention for future
anti-invasive approaches in gliomas. On the other hand, recent evidence has
shown that the kinase Lyn constitutes more than 90% of the total Src kinase
activity in glioblastomas (Stettner et al., 2005), making this single enzyme a
potential major target of anti-Src strategies.

Another interesting integrative target is the enzyme glycogen synthase
kinase-3 (isozymes GSK-3o and B), which can be regulated by both Rho and
Src members in glioma cells (Kleber et al., 2008; Skuli et al., 2006). This multi-
tasking enzyme is capable of interacting directly with more than 50 different
substrates (Jope et al., 2007) and is a key point of convergence of many
pathways that regulate expression of pro-invasive genes, cellular structure,
apoptosis, and motility (Jope et al., 2007; Meijer et al., 2004). Indeed, specific
inhibition of GSK-3 can potently and specifically block glioma cell migration
without causing other significant changes in the cell phenotype (Nowicki et al.,
2008). Many small-molecule inhibitors, including, for example, lithium salts
that are used in current psychiatric practice, are already available against this
enzyme (Meijer et al., 2004).

Interestingly, strategies that were designed to prevent neo-vascularization,
such as VEGF targeting and integrin competition, may also impact the migra-
tory ability of glioma cells. Anti-VEGF antibodies inhibit the association of this
growth factor not only to VEGF receptors in endothelial cells but also to
receptors in glioma cells, which are thought to regulate cell migration (Her-
old-Mende et al., 1999). In a similar manner, soluble RGD-based peptides that
compete with integrin binding are well known to affect glioma cell adhesion and
motility in vitro (D’Abaco and Kaye, 2007). Accordingly, the integrin compe-
titor peptide cilengitide is currently being tested as adjuvant therapy of chemor-
adiotherapy for gliomas, with positive preliminary results (Stupp et al., 2007).

A last major concern for the design of anti-invasive strategies is the difficulty
of predicting the effects of anti-migratory compounds on the residual popula-
tion(s) of tumor cells in vivo. Evidence from cultured glioblastoma cells sug-
gests that proliferation and migration are highly plastic processes under control
of poorly understood molecular switches that respond to microenvironmental
signals (Gao et al., 2005). Indeed, actively migrating glioma cells cultured
within brain slices may revert to a phenotype of local proliferation if they
become stalled on blood vessel branches (Farin et al., 2006), which has been
suggested as a mechanism for the formation of the distant perivascular tumor
foci observed in clinical specimens. Thus, sub-lethal doses of anti-invasive drugs
unable to cause apoptosis in motile cells could instead have the risk of promot-
ing the growth of secondary tumors (Giese and Westphal, 1996).
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Therefore, in addition to their inherent genetic instability, the ability of
glioma cells to convert phenotype (proliferative < = > migratory) under micro-
environmental influences (Giese et al., 2003) could significantly contribute to
the appearance of resistant populations against therapies that act through a
single type of selection pressure. Interestingly, seminal work by Goldie and
Coldman (1979) suggested the use of rapidly alternating cytotoxic treatments to
avoid single-pressure bias and deal more effectively with resistant clones during
adjuvant chemotherapy. It is tempting to speculate whether a similar strategy,
alternating anti-proliferative and anti-migratory compounds acting through
highly different mechanisms, could prove efficient against invasive glioma
cells. Future research on the characterization of the major switches that regulate
the conversion of migratory and proliferative phenotypes in vivo (Gao et al.,
2005) will be critical to better understand the influence of the microenvironment
on residual tumor cells, and the evolution and weak points of these cell
populations.

In sum, the cellular mechanisms that make glioma cells invade efficiently and
selectively within central nervous tissue, as well as the specific molecular med-
iators underlying these mechanisms, are still largely unexplored. Novel in vitro
and in vivo models are required to reproduce more accurately the multiple
influences that stimulate glioma cell migration in the CNS and to identify the
molecules that control this process. This information must be combined with
the wealth of data from molecular profiling of patients and seminal bioinfor-
matic analysis (Phillips et al., 2006) (see Chapters 23-24), to identify glioma-
specific, pro-invasive targets amenable to pharmacological intervention.
Together with current cytostatic and angiostatic strategies, inclusion of a
‘motostatic’ strategy is likely to maximize the efficacy of adjuvant therapies
and improve progression-free survival and long-term management of these
devastating tumors.
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